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The paper is presenting and analyzing the Unisim FPH simulator used for simulate the tubular furnaces. The
paper is structured in for parts. First part is dedicated to describe and comment the principal commands
utilized on the simulators configuration. The geometric and operating data utilized were from a Catalytic
Reforming unit. The next two parts present the simulation results and importing of the heated stream’s
properties (gasoline). The last part presents the comparison between the results obtained with Unisim FPH
simulator and the result obtained during classic calculation with formulas from literature. The results have
revealed both common and different features of the two mathematical models.
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The great majority of operations in refining and
petrochemical industries use temperature as one of the
main operating variables. Therefore, it is crucial to known
if the heating equipment works properly, in order to
minimize the expenses, which is a very important variable
nowadays.

The most important equipment for producing and
transfer of heat is the tubular furnace. Establishing the
operating parameters and the furnace’s performances
could be realized based on mathematical models for
combustion and heat transfer and using of some calculating
programs. In principal for an engineer are two available
solutions:

First solution consists in creating of a mathematical
model of the tubular furnace and elaborating of a
calculation program for numerical solving of the model. In
this category are included some international [1, 2] and
national [3-5] paper works. In the latest researches
presented are being treated separately the two sections of
the tubular furnace. The convection section is being
assimilated to a system with concentrated parameters.
The mathematical model contains two thermal balance
equations associated to those two material streams: flue
gases and hated stream [4]. The expressions utilized in
thermal balance are derived from Newton’s law. A difficult
issue is related to adapting of mathematical model to
specific of the furnace and at the particularities of the heated
stream. The simulation of the convective section allowed
establishing of the static characteristics which are linear.

The modeling of the radiation section has been widely
presented in [3], where the tubular furnace radiation
section contains two subsystems: combustion subsystem
and heat transfer subsystem. The combustion model is
based on the material balance equations associated to
the burning of the Hydrogen and Carbons contained in the
fuel, these equations exist in literature.

An interesting study of incomplete burning in different
operating conditions of the tubular furnace is made in the
mentioned paper. The mathematical model of the thermic
transfer is based on the Lobo-Evans model. The model
makes part from category of the models which consider
the perfect mixture of the flue gases. Solving of the
mathematical model allows establishing of the static
characteristics of the radiation section. From these features
we can highlight the Output temperature - the amount of
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air coefficient characteristic, there is a characteristic with
extreme point [6].

The second solution is based on the specialized
simulators developed on solving the heat transfer
equipment. Among them we can mention the following
simulators: Aspen Fired Heater produced by Aspentech
[7], HeaterSim [8], Fired Process Heater Modeler (UniSim
FPH) produced by Honeywell [9]. There is relatively little
scientific information about these simulators, for example
[10], but should be mentioned the tendency of using them
in academic field [11].

On this purpose, the authors have been studied UniSim
FPH, realizing a guide for using this simulator, this paper
work having didactical and scientific use.

General presentation of UniSim FPH

UniSim FPH is a simulation program developed to
calculate convection and radiation sections performances
in an industrial furnace. The simulator disposes of two
options that any user can choose depending on the subject
of the research:

FIXED-Performance Simulations — This option can be
used when the performances of a furnace needs to be
tested. Itis used to see if the furnace works properly. Input
data are furnace geometry, feed composition etc. and the
program calculate temperatures, heat transfer, pressure
drops etc.

CALCULATE-Burner Rate Mode - In this case, UniSim
FPH calculates the necessary fuel flow in order to bring
the outer feed to demanded parameters. This option is
very useful nowadays where the fuel consumption needs
to minimized. This facility is used especially when a new
radiation section needs to be created.

The Unisim FPH can simulate furnaces which have is
convection section up to 9 bundles of horizontal tubes,
with or without fins. Each bundle can be fed with different
technological stream. A typical scheme associated to the
tubular furnace is presented in figure 1.

The steps of use UniSim FPH include:

-Start up - beginning of the program;

-Firebox Model - choosing of the mathematical model;

-Firebox Geometry - user defines geometrical details of
the radiation section;

-Firebox Processes - radiation input streams;
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-Tube Bank Geometry — user defines geometrical details
of the convection section;

-Tube Bank Processes - convection input streams;

-Combustion - the calculus of the burn gas distribution;

-Draught Calculation;

-Physical Properties of heated streams.

The simulator configuration

The configuration of the simulator may be presented
and analyzed just for areal furnace. The case study presents
the most important aspects of performance simulation of
a furnace from Catalytic Reforming Unit [14]. Since
endothermal reactions are dominant in Catalytic Reforming
reaction, the multiple reactors are arranged in a series with
a reheating furnace to maintain the reaction rate for
reforming reaction.

In figure 2 is presented a section of tubular furnace that
is heating the gasoline entering in Catalytic reforming unit,
and steam generator in convection section.

Below will presented the most important issues in
simulator configuration, detailing the configuration menus
of the simulator.

Start Up menu contain next specifications:

- Furnace configuration: paralellipipedical radiation
section provided with tubes;

- Number of Process Streams: 3 (the effluent stream
consisting of gasoline and recirculating gases, sub-cooled
water and boiling point water);

- Number of Tubes Banks: 2 (2 tube banks in radiation
section).

Firebox Model. The mathematical model of the
radiation section is considered well stirred; the distribution
of the heating zones inside the furnace shall be done
automatically by the program. That means that is
considered constant temperature in the radiation section.

Firebox Geometry

- Cabin Firebox Layout: Paralellipipedical with U tubes;
- Number of Fireboxes: 1;

- Firebox Length: 6.817 m;

- Firebox Width: 5.183 m;

- Firebox Height: 13.12 m.

- No. of Tubes in a Path: 2;
- No. of Paths in a Firebox Tube Line; 24;
- Orientation of Main Tubes: Vertical tubes;
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Fig. 2 The structure of the Furnace from Catalytic Reforming Unit

- Height from floor to first tube: 0.365 m

- Tube Outside Diameter: 91 mm;
- Tube Wall Thickness: 8 mm;
- Tube Separation: 3048 mm.

Firebox Process - Firebox Process Stream

- Process Stream in Firebox: 1 (process fluid defined by
number 1);

- Flow History: First entry (the first entry of the effluent
is in the radiation section).

Tube Bank Geometry — Tube Bank Details

- Tube Type: High round fins;

- Tube Layout: triangle at 30°;

- Tube Pitch: 228.6 mm;

- Transverse Pitch: 228.6 mm;

- Longitudinal Pitch; 198 mm;

- Tube Length: 5.064 m.

After introduce characteristic data, the resulted scheme
is presented in figure 3.

Combustion - Burner +Combustion

- Type of Burners: Natural Draught;

- Burner Location: floor;

- Number of Burners: 12;

- Burner Diameter: 0.6 m.

Observation. The burners in the case of simulated
furnace are located on the sidewalls, sideways of the U
tubes. The FPH simulator doesn’t contain this option, and
this is the reason why the authors have chosen to simulate
the furnace using floor located burners , and instead of U
tubes have chosen the sidewalls tubes. Despite the fact
that geometry is a little different, have been secured the
heating of the tubes using the floor burners.

Combustion - Fuel
-Fuel Type Identifier: Gaseous;
-Fuel Flowrate: 600 kg/h;
-Fuel Temperature: 20°C.

http://www.revistadechimie.ro 1791



% et} £y el faain Y
o~ L B W i W
¥ 2o ¢ £ Vi f
p— —
e W o S & C‘E
R 2| P o
= |57 S U7 R W i v
o %m o——=- f
Fat
=y £y . 2
st p Lw L f
o 0—6—6—-6
Fat
S
¥
a) b)
Fig. 3. Scheme of strems circulation a) the stream no. 1; b) the
stream no. 2

Combustion - Gaseous Fuel. FPH simulator allows using
of gaseous fuels defined by types of chemical compounds.
In figure 4 is presented the specification window of fuel
composition, there contains usually Hydrocarbons, H, but
also CO.

Combustion - Combustion products
The specifications are:

- Percent Oxygen in Flue Gases: 7.8 %;
- Percentage of Excess Air: 57%.

Calculation of the heated stream of gasoline
properties

One of the important aspects of the UniSim FPH is the
estimation and the importing of the physical properties of
the streams which circulate inside the furnace. In this paper
is presented the calculation mode of gasoline’s properties
processed in Catalytic Reforming Unit. The next stage
described in the paper it is focused on importing physical
properties of the heated streams, properties which depend
with the temperature and the pressure inside the different
parts of the furnace. The gasoline used has the next

Table 1
GASOLINE STREAM PROPERTIES

Vaporized | Temperature | Vaporized | Temperature
volume [*C] volume [*C]
[a] [*2]
5 103 60 136
10 106 70 143
15 109 20 153
20 113 o0 163
30 112 23 174
40 122 100 183
30 127

properties: density d*, =0.7583 and the ASTM distillation
curve there are presented in table 1.

The physical properties calculation of the gasoline has
been done using Unisim Design and itis necessary to cover
the next stages [12]:

- Choosing of the thermodynamic model;

- Defining distillation curve of the gasoline;

- Specify of the gasoline’s density;

- Checking the properties resulted.

The thermodynamic model is Peng-Robinson and the
specification of the steps b) and c) are presented in [12].

After covering of this steps regarding the operation of
defining the pseudocompounds associated to blending, is
being calculated the mixture of pseudocompounds which
approximates the gasoline stream introduced in reforming
furnace. Infigure 5 is presented the comparison between
the ASTM and experimental curves.

Importing of the properties of the gasoline stream
Due to the fact that UniSim FPH importing mechanism
is conditioned by the heated stream properties, which
needs an heating equipment, (E101 heat exchanger), in
Unisim Design simulator the user is going to introduce the
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Fig. 4. The composition of the gaseous fuel
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simulation diagram of a heat exchanger configured as
below:

- The heated stream is Feed.

- The inlet temperature of the heated stream is the
inferior limit of the temperature domain associated to the
heated stream in tubular furnace (inlet temperature);

- The outlet temperature of the heated stream is the
superior limit of the temperature domain associated to the
heated stream in tubular furnace (outlet temperature);
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- The inlet pressure of the heated stream is the inferior
limit of the pressure domain associated to the heated
stream in tubular furnace;

- the outlet pressure of the heated stream is the superior
limit of the pressure domain associated to the heated
stream in tubular furnace;

-the pressure drop on the heat exchanger should lead to
the value associated to the inferior limit of the heated
stream pressure domain.
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In the figure 6 is presented the simulation diagram
(Unisim Design) associated to the heat exchanger utilized
to import the heated stream properties.

In the Unisim FPH environment it will be activated the
Import from Unisim Design. At this moment the user is
operating with two simulators: Unisim FPH (the simulating
of tubular furnace) and Unisim Design (the simulation of
the phase equilibrium associated to the Feed stream). After
this action, the Unisim FPH program opens a dialog
window with active heat exchangers from Unisim design,
figure 7. Thus, the user may select in Unisim Design the
heat exchanger in which will be calculated the physical
properties of the heated stream.

In Unisim FPH, the user will define the parameters
farther:

- the number of the points which will be taken for
properties calculation =12;

- the temperature domain of the heated stream, domain
defined by the inlet and outlet temperature of the heated
stream for the E101 exchanger;

- the pressure domain of the heated stream, domain
defined by the inlet pressure and the difference between
inlet pressure and pressure drop associated with E101 heat
exchanger.

After all these conditions have been fulfilled, the Unisim
FPH will activate the calculation of the physical properties
for each point, characterized by temperature and pressure
by utilizing the structure of Feed stream and the
thermodynamic model selected through Unisim Design.
At the end of these calculations, Unisim FPH simulator
will show the calculated properties of the heated stream
in the number of points defined lately (fig. 8).

Defining of the properties for stream composed from
known chemical compounds

The tubular furnace studied presents a second stream
heated, water. The Unisim FPH has a thermodynamic
database which allows the calculation of the pure
components mixture. In figure 9 is presented the

Calculation method
Parameter UM
Claszical | UniSim FPH
Tield of the furnace E] T6.17 73.11
Inferior heat capacity of the fuel klikg 43532 45414 Table 2
Combustion air flow kg'h 13171 14335 RESULT OBTAINED WITH UNISIM AND CLASSICAL
= CALCULATION
Flue gazes flow kg'h 13771 15435
Heat developed kW 80956 2069
Heat lost through walls kW 787 602
Heat lost with flue gases kW 1142 1559
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configuration mode of the simulator for the water
compound.

The simulation of the furnace

The performances of the Catalytic Reforming furnace
have been established using UniSim FPH software and
using classically hand methods [13]. The results obtained
through two methods of calculation are presented in table
2. The analysis of the results reported to Unisim FPH lead
to the following conclusions (Unisim versus classical
method):

- the yield calculated with Unism FPH is less than the
yield obtain through classical calculation (4.1%);

- the flow of the combustion air generated from classical
calculation is bigger than the one obtained using Unisim
(2%);

- the heat lost through walls has different values (-30%);

-the heat loss from flue gases has different values
(+26%);

All this differences are generated by different
mathematical models utilized on the two cases. Not having
industrial measures and taking into account the complexity
of the mathematical models, we may estimate that the
results obtained with Unisim are more accurate than the
ones obtained based on classical relation.

Conclusions

In the paper was presented and analyzed Unisim FPH
simulator for reforming furnace. There have been also
described and commented the main commands used in
the Unisim FPH simulator configuration. Geometric and
operating data used came from a furnace in a catalytic
reforming unit. Particular attention was given to the
calculation and importing of the physical properties of flow
heated stream (gasoline). Simulation of the furnace was
accomplished by two pathways: the classical simulator
Unisim FPH and an algorithm based on the relations in the
literature. Comparative analysis of the results revealed both
close values (yield, burning heat) but also significant
differences (airflow rate, heat loss through walls and flue
gases). The results obtained showed both common and
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differences mathematical models. Taking into account the
common points of the two methods and also the
differences generated by the simplification of the model
based on classical relation, the authors consider validated
the model associated to Unisim FPH simulator.
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